The nucleocapsid protein of severe acute respiratory syndrome coronavirus inhibits cell cytokinesis and proliferation by interacting with translation elongation factor 1alpha.

نویسندگان

  • Bing Zhou
  • Junli Liu
  • Qiuna Wang
  • Xuan Liu
  • Xiaorong Li
  • Ping Li
  • Qingjun Ma
  • Cheng Cao
چکیده

Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, an emerging disease characterized by atypical pneumonia. Using a yeast two-hybrid screen with the nucleocapsid (N) protein of SARS-CoV as a bait, the C terminus (amino acids 251 to 422) of the N protein was found to interact with human elongation factor 1-alpha (EF1alpha), an essential component of the translational machinery with an important role in cytokinesis, promoting the bundling of filamentous actin (F-actin). In vitro and in vivo interaction was then confirmed by immuno-coprecipitation, far-Western blotting, and surface plasmon resonance. It was demonstrated that the N protein of SARS-CoV induces aggregation of EF1alpha, inhibiting protein translation and cytokinesis by blocking F-actin bundling. Proliferation of human peripheral blood lymphocytes and other human cell lines was significantly inhibited by the infection of recombinant retrovirus expressing SARS-CoV N protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Idiosyncrasies of COVID-19; A Review

The Coronavirus disease 2019, identified by Chinese researchers to be the caused by a novel enveloped betacoronavirus, Severe Acute Respiratory Syndrome Coronavirus- 2 which was first isolated in Wuhan, China has been declared a global pandemic by the world health organization. The virus has several structural proteins that contributed to its pathogenesis such as spikes, membrane, envelop and n...

متن کامل

Designing an ELISA Method for Measurement of Human IgG and IgM Antibodies against SARS-CoV-2

Background and purpose: Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, an indirect ELISA method was designed to measure the human IgM and IgG antibodies against SARS-CoV-2. Materials and methods: Protein sequence of nucleocapsid antigen from SARS-CoV-2 was expressed in E. coli BL21 and then was...

متن کامل

Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain.

The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The viral nucleocapsid (N) protein plays an essential role in viral RNA packaging. In this study, recombinant SARS-CoV N protein was shown to be dimeric by analytical ultracentrifugation, size exclusion chromatography coupled with light scattering, and chemical cross-linking. Dimeric N ...

متن کامل

Gastrointestinal Manifestations in Patients Infected with SARS-CoV-2

Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2, has recently become the number one problem affecting global health. Coronavirus disease 2019 is principally recognized by its respiratory manifestations; however, recent studies have shown an increasing number of patients with gastrointestinal complaints like diarrhea, nausea, vomiting, and abdominal discomfort...

متن کامل

Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist.

The recent emergence of several new coronaviruses, including the etiological cause of severe acute respiratory syndrome, has significantly increased the importance of understanding virus-host cell interactions of this virus family. We used mouse hepatitis virus (MHV) A59 as a model to gain insight into how coronaviruses affect the type I alpha/beta interferon (IFN) system. We demonstrate that M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 82 14  شماره 

صفحات  -

تاریخ انتشار 2008